skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bassett, Katherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The expansion of renewable electricity generation, growing demands due to electrification, greater prevalence of working from home, and increasing frequency and severity of extreme weather events, will place new demands on the electric supply and distribution grid. Broader adoption of demand response programs (DRPs) for the residential sector may help meet these challenges; however, experience shows that occupant overrides in DRPs compromises their effectiveness. There is a lack of formal understanding of how discomfort, routines, and other motivations affect DRP overrides and other related human building interactions (HBI). This paper reports preliminary findings from a study of 20 households in Colorado and Massachusetts, US over three months. Participants responded to ecological momentary assessments (EMA) triggered by thermostat interactions and at random times throughout the day. EMAs included Likert-scale questions of thermal preference, preference intensity, and changes to 7 different activity types that could affect thermal comfort, and an opened ended question about motivations of such actions. Twelve tags were developed to categorize motivation responses and analyzed statistically to identify associations between motivations, preferences, and HBI actions. Reactions to changes in the thermal environment were the most frequently observed motivation, 118 of 220 responses. On the other hand, 47% responses were at least partially motivated by non-thermal factors, suggesting limited utility for occupant behavior models founded solely on thermal comfort. Changes in activity level and clothing were less likely to be reported when EMAs were triggered by thermostat interactions, while fan interactions were more likely. Windows, shades, and portable heater interactions had no significant dependence on how the EMA was triggered. 
    more » « less
  2. Abstract We present a proof of concept demonstration of solar thermochemical energy storage on a multiple year time scale. The storage is fungible and can take the form of process heat or hydrogen. We designed and fabricated a 4-kW solar rotary drum reactor to carry out the solar-driven charging step of solar thermochemical storage via metal oxide reduction–oxidation cycles. During the summer of 2019, the solar reactor was operated in the Valparaiso University solar furnace to effect the reduction of submillimeter cobalt oxide particles in air at approximately 1000∘C. A particle collection system cooled the reduced particles rapidly enough to maintain conversions of 84–94% for feed rates of 2.9−60.8gmin−1. The solar-to-chemical storage efficiency, defined as the enthalpy of the reduction reaction at 1000∘C divided by the solar energy input, reached 20%. Samples of the reduced cobalt oxide particles were stored in vials in air at room temperature for more than 3 years. The stored solar energy was released by reoxidizing samples in air in a benchtop reactor and by electrochemically reoxidizing samples to produce H2. Measurements of the oxygen uptake by the reduced metal oxide confirm its promise as a medium to store and dispatch solar energy over long durations. Linear sweep voltammetry and bulk electrolysis demonstrate the promise of H2 production at 0.55 V relative to the normal hydrogen electrode, 0.68 V below the 1.23 V potential required for conventional electrolysis. 
    more » « less